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Abstract. Agents that interact with humans are known to benefit from integrat-
ing behavioral science and exploiting the fact that humans are irrational. There-
fore, when designing agents for interacting with automated agents, it is crucial
to know whether the other agents are acting irrationally and if so to what ex-
tent. However, little is known about whether irrationality is found in automated
agent design. Do automated agents suffer from irrationality? If so, is it similar in
nature and extent to human irrationality? How do agents act in domains where
human irrationality is motivated by emotion? This is the first time that extensive
experimental evaluation was performed in order to resolve these questions. We
evaluated agent rationality (for non-expert agents) in several environments and
compared agent actions to human actions. We found that automated agents suffer
from the same irrationality that humans display, although to a lesser degree.

1 Introduction

Automated Agents are integrated into countless environments, such as Electronic com-
merce, Web crawlers, Military agents, Space Exploration probes and Automated drivers.
Due to the high importance of automated multi-agent environments, many competitions
were established where automated agents compete with each other in order to achieve
a goal [35,2,1,36].

Modeling agents is beneficial for agent-agent interaction [29]. However, building
such a model is a complex issue, and furthermore, if the model built is too far from
the actual opponent’s behavior, using it may become detrimental [25,22]. How should
designers plan their agents when opponent modeling is unavailable? Can any general
assumptions be made on automated agents and used for agent design?

Research into peoples’ behavior has found that people often do not make strictly ra-
tional decisions but instead use sub-optimal, bounded policies. This behavior has been
attributed to a variety of reasons including: a lack of knowledge of one’s own prefer-
ences, the effects of the task complexity, framing effects, the interplay between emotion
and cognition, the problem of self-control, the value of anticipation, future discounting,
anchoring and many other effects [37,23,5,11]. Since people do not usually use fully
rational strategies themselves, agents based on game theory approach, which assume
rational behavior in humans often perform poorly [28,20,8]. Many studies have shown
that psychological factors and human decision-making theory are needed in order to
develop a good model of true human behavior, which in turn is required for optimizing
the performance of agents interacting with humans [16,19,26,30,28,7,9].



In domains where opponent modeling is infeasible, can we use rationality models
or models of human behavior in order to design agents that interact with other agents
(for non-expert-designed agents)? In order to do this we need to determine whether we
can assign rationality traits to the agents: Are automated agents strictly rational, and if
not how do they compare to humans? The answer to this question will provide useful
guidelines for agent strategy planning when opponent agent modeling is infeasible,
especially for domains where human rationality has been studied.

Throughout this paper, a rational player will refer to a player who tries to maximize
his expected outcome and assumes that all other players are doing so as well. Irrational
behavior will be indicated by a player who fails to compute a rational strategy, has his
own subjective utility function which differs from the expected outcome or believes
(possibly justifiably) that other players use irrational behavior. Note that, in cases in
which opponents act irrationally, a player acting irrationally as well, may gain a greater
expected outcome than a fully rational player.

We perform an extensive experiment evaluation of automated agents’ behavior and
compare it to fully rational and human behavior in three different games. Each game
will allow the exploration of different aspects of agent rationality. In the first game we
examine whether agents exhibit an irrational tendency to keep all options available (as
humans are known to do). For the second game we use a costly exploration game. The
second game expands our study as it enables the exhibition of behaviors that lie on
either side of the equilibrium. In a case where agents are not purely rational, as we
hypothesize, it remains to be seen whether they display the same type of irrational be-
havior as humans or sway in the opposite direction. The third game integrates activities
which trigger emotions. We show that as one would expect humans become emotion-
ally involved when playing this game. It remains to be seen how agents react. Do agents
use strategies that mimic human emotions? Will they use these strategies if it involves
a clear utility loss?

In this study we will determine whether automated agents are rational or not and
to what extent, and whether or not they display behavior that is similar to humans. The
findings of this research have practical implications for designing agents that interact
with non-expert agents.

2 Related Work

Opponent modeling is of great importance when designing automated agents which in-
teract with other agents [29]. Carmel and Markovitch [13] show that if an agent can
build a model of its opposing agent, this model could be used to improve its own per-
formance. McCracken and Bowling [25] propose a method for modeling an opponent
in the Rock-Paper-Scissors domain. Lazaric et al. [22] propose a method for opponent
modeling in Kuhn Poker (a degenerated version of poker). However, in more sophisti-
cated games these methods become intractable.

Angluin [4] proposes an algorithm for modeling an automated agent as a Moore
machine. Angluin assumes the existence of a teacher which replies ’Yes’ for a correct
conjecture or provides a counterexample on which the model and the machine disagree.
This algorithm is polynomial in the number of states in the machine. However, the exis-



tence of such a teacher isn’t likely when modeling an opponent. Carmel and Markovitch
[13] relax the teacher assumption and provide a heuristic algorithm for learning Moore
machines. The algorithm builds a model consistent with past examples, and when a new
counterexample arrives it tries to extend the model in a minimal fashion. However, in
practice an automated opponent is not likely to be limited to being a Moore machine
but rather a more general Turing machine.

Various studies [10] have compared experimental results between the strategy method
(in which a responder makes conditional decisions for each possible information set) to
the more standard direct-response method (in which the responder observes the action
of the first mover and then chooses a response). There is mixed evidence as to whether
the two methods lead to similar results. While in the strategy method the subjects make
decisions for all the possible options, in our work the agents must provide a general
strategy since the number of possible options is extremely large. Our work should not
be confused with research on the psychology of programming [31] that investigates how
understanding psychological aspects of programming improves their ability to write
error-less and readable code.

Human behavior is well studied and plays an important role in human-agent inter-
action. However, the evaluation of automated agent rationality is much less explored.
Grosz et al. [18] introduced the Colored Trails game in order to investigate decision-
making strategies in multi-agent situations. They showed that human players and agents
do not play in the same way. Their results indicate that people design automated agents
that don’t play as well as human players, possibly because they cooperate less than peo-
ple. It is interesting to note that the agents also do not adhere to the equilibrium strategy.
Although the environment used in this game was a mixed human-agent environment,
while we are studying environments composed only of agents, this research provides
some insight into our problem.

Manistersky et al. [24] explored the evolution of automated agents in a negotiation
environment. Designers were given a chance to improve the agents based on previous
performance. They found that agents designed by humans seem to perform better than
equilibrium agents but not as well as Pareto-optimal agents. The environment explored
is a pure automated agent environment, such as the one we use. However, they did not
compare the performance of agents to that of humans.

Unlike the above-mentioned prior work, the games we selected are purposely very
simple compared to the Colored Trails and negotiation games. Neither do we aim to
evaluate the performance of the agents described in this paper. Rather we are interested
in studying the degree of rationality displayed by the agents relative to humans.

It seems that automated agents are not purely rational and are different from hu-
mans. We would like to know, however, how they relate to humans. Do the agents act in
a unique fashion? Or are they displaying the same irrational behavior that humans use,
but possibly to a lesser degree?

3 Door Game

The first experiment tests to what extent agents and people exhibit a tendency to keep
all options viable, even when the cost of doing so is greater than the potential benefit.



This irrational tendency among humans has been demonstrated by Shin and Ariely [34]
via the “Door Game”.

In the basic version of the game, the player is faced with three doors (alternatives),
each associated with a different distribution of payoffs. The distribution of each door is
a priori unknown to the player. The player first chooses with which door to begin, and
from that point on, any additional click on that door will yield a reward drawn from
that distribution. At any time, the player can switch to any other door by clicking on it.
Switching to another door enables the player to receive rewards from the distribution
characterizing that door via additional clicks on it. The player can collect rewards only
from the door to which she has most recently switched. Rewards are accumulated and
the player’s goal is to maximize gains given a limited “budget” of clicks. Once the
player has used all of her clicks, the game terminates and she is paid the sum of her
door-click pay-offs. The click that the player needs to “sacrifice” in order to switch
doors is in fact a switching cost. This setting can be mapped to a Mutli-Armed Bandit
problem [6], in which a rational strategy focuses most of the exploration in initial rounds
and then sticks with the door with the highest average outcome.

Shin and Ariely also considered a variant in which each time a participant clicks on
a door, the two other doors are reduced in size by 1

15 of their original width. A single
click on a shrinking door restores it to its original size and the process continues. Once a
door shrinks to zero, it is eliminated for the remainder of the game. In the basic version
Shin and Ariely show that human subjects followed the rational strategy, however, with
the shrinking door variant, players tend to switch from door to door, in an effort to keep
their options open. This resulted in a substantial performance degradation (in terms of
the rewards accumulated) compared to choosing any single door and sticking with it.

Our experiment with the door game used the game variant with the diminishing
doors. We followed a specific experimental design reported in [34] where the game
is made up of two phases, each with a “budget” of 50 clicks. In the first phase (the
exploration phase), the participants do not receive any payoff and were only notified of
the payoff amount. The purpose of this phase is for the participants to identify the best
door. This phase is long enough for a rational player to select a single door from which
she does not need to divert for the entire second phase (while ignoring the vanishing of
the other doors). In the second stage (the exploitation phase), the participants received
the payoff obtained from the door on which they clicked.

The experiment included 48 computer science students, each of whom programmed
an agent capable of playing this game, as part of the students’ regular course assign-
ment. Their grades were in part calculated based on the performance of their specific
agent. The students received a thorough explanation which included the game rules, the
payoff accumulation method and the division into the two stages.

52 human subjects were recruited using Amazon’s Mechanical Turk service [3],
which is a crowd sourcing web service that coordinates the supply and demand of tasks
which require human intelligence in order to be completed. Amazon Mechanical Turk
has become an important tool for running experiments with human subjects and has
been established as a viable method for data collection [27].

The subjects first received appropriate instructions. In order to assure that they
fully understood the game, the subjects had to first play the game when no score was



recorded, and only then they could play the actual game. In order to encourage them to
play seriously they received a bonus which was proportionate to their performance.

The GUI presented the doors to the human subjects, with each door size changing
according to the clicks made. Figure 1(a) demonstrates a screen-shot of a game where
the user has not yet clicked on a door. Figure 1(b) shows a screen-shot where the user
has picked the middle door and the other two doors have started shrinking.

(a)

(b)

Fig. 1. A screen-shot of the door game user interface: (a) before user clicks on door (b) user
clicked on middle door

As discussed above, rational behavior in this game would be to dedicate all clicks
in the first phase to exploration and stick to a single door throughout the second phase.
Therefore, any switching between doors during the second phase can be classified as ir-
rational behavior. In our experiment, 77% of the human subjects switched doors during
the second phase of the game, comparable to only 29% of the agents programmed for
this task. While the human subjects switched doors 14.80 times on average, in the last
50 clicks, the automated agents did so only 3.02 times on average. All results reported



throughout all experimental sections are statistically significant with α = 0.05 (using
either student t-test or Fisher’s exact test). These results indicate that, just as humans,
also automated agents act irrationally to preserver options, even at a great expense.
However, the extent of this irrational behavior is much less for automated agents. This
provides the first answer to the questions we raised.

In the door game, irrational behavior could only be displayed in a single direction, as
rational behavior required not switching doors at all. We next investigate what happens
when rational (or optimal) behavior has a value which can be exceeded in both direc-
tions. The irrational player may adhere to a value which is either greater or less than the
rational one. Assuming that the agents will act irrationally again, will they display the
same type of behavior as humans or will they sway in the opposite direction?

4 Search Game

The second irrational behavior we inspect is the property observed in human consumers
who tend to perform too short a search prior to purchasing a product [15]. This domain
is particularly interesting (assuming the agents are irrational) as we can observe whether
they display the human tendency to perform a short search, or if they exhibit a different
type of irrational behavior and perform too long a search.

The sequential exploration problem considers an individual facing a number of pos-
sible available opportunities (e.g., to buy a product) out of which she can choose only
one. The value of each opportunity to the agent is a priori unknown. Instead, only its
probability distribution function is known, and revealing the true value of an opportunity
is costly. The problem, to which a broad class of real-world situations can be mapped,
was formally introduced by Weitzman [38] along with its optimal (cost-minimizing or
utility-maximizing) strategy. The optimal strategy derives from the trade-off between
the benefit from the potential improvement in the quality of the results which the agent
may further obtain with the additional exploration and the costs of carrying out such ex-
ploration. The optimal strategy is based on setting a reservation value (a threshold) for
each opportunity and choosing to obtain the value of the opportunity associated with the
minimum reservation value at any time (terminating the exploration once the minimum
value obtained so far is less than the minimum reservation value of any of the remaining
opportunities). Intuitively, the reservation value of an opportunity is the value where the
agent is precisely indifferent: the expected marginal benefit from obtaining the value of
the opportunity exactly equals the cost of obtaining that additional value.

Much evidence has been given in the literature to differences between the behaviors
exhibited by people and the theoretic-optimal strategy in costly exploration settings.The
major difference reported relates to the tendency of people to terminate their search
before the theoretic-optimal strategy would have done so [32,14,15].

In order to evaluate the existence and extent of this phenomena in automated agents,
we used 31 agents whose strategies were programmed by computer science students
(each agent by a different student) as part of their regular course assignments. (The
group of students who designed these agents is different from the group that designed
the agents for the door game.) Each agent receives as input a list of opportunities, their
distribution of values and the cost of obtaining these values. The agent had to decide



at any time the value of which opportunity to obtain next (incurring the appropriate
cost) and when to terminate the exploration. Each student’s grade in the assignment
was correlated with her agent’s performance. As part of their assignment, students pro-
vided documentation that described the algorithm used for managing the exploration.
To compare the results with people, we used a GUI-based experimental infrastructure,
simulating a price-search environment. Each opportunity represented a store associated
with a different distribution of prices and a cost for obtaining the true price (represented
as a “parking cost” for parking next to that store). Figure 2 presents a screen-shot of this
GUI. Querying a store is done by clicking the “Check” button below it, in which case
the true price of the store becomes known and the parking cost of that store is added to
the accumulated cost. The game terminates when clicking the “Buy” button (available
only in stores whose prices are known).

Fig. 2. A screen-shot of the search game user interface

Human subjects were recruited using Amazon’s Mechanical Turk service. Overall
150 human subjects participated in this experiment. Subjects received a short textual
description of the experiment, emphasizing the exploration aspects of the process and
the way costs are accumulated, followed by a short video clip. Then, a series of practice
games were played in order to make sure that the subject understood the experiment.
Participants had to play at least three practice games; however, they could continue
practicing until they felt ready to start the experiment.

We used 300 randomly generated exploration problems. Each problem contained
8 opportunities associated with distributions of values and costs. Distributions were
formed as multi-rectangular distribution functions (i.e., based on rectangles of equal
width, however each with a different distribution mass) defined over the continuous
interval 0 − 100. Costs were uniformly drawn from the interval 1 − 10. Each agent



was tested using all 300 problems, and each human subject was randomly assigned 10
problems out of this set.

Figure 3 depicts the average search extent in our experiments (measured as the
number of opportunities explored within each game) for people, agents and the optimal
exploration strategy (EQU). As observed from the figure, the tendency to terminate
exploration earlier than is optimal, is reflected both in people’s and agents’ exploration
patterns. This tendency, however, is observed to a greater extent with people, whereas
with agents it is somehow less so. Thus we have shown that not only do agents display
irrational behavior and on the other hand are more rational than humans, but we also
show that the agents veer in the same irrational direction as the humans, as they stop
their search before reaching the optimal point, just as humans do (rather than searching
for longer than optimal).

In both of the games we have described so far one could maybe claim that the
player did not fully understand what the rational behavior was, and therefore did not
use it. The third game investigates a setting where we know that the human players
understand what the rational behavior is, yet they still choose not to use it. In humans
this would be explained as emotional involvement on the part of the player. Will agents
still display irrational behavior when the designers are known to understand the rational
strategy?

Fig. 3. People, agents and optimal agent search extent.



5 Trust-Revenge Game

In this last game, we studied a more complex two-player domain. The Trust-Revenge
Game, which will be described shortly, is designed to arouse three different emotions -
trust, reciprocation (or fear) and revenge.

Research with human subjects on trust, reciprocation and revenge (or punishment)
has been conducted in the past. The investment game was first introduced by Berg et
al. [21]. In the investment game there are two types of players. Each player is given 10
chips at the beginning of the game. Players of type A are told that they can give some
or all of their chips to a player of type B (this is the trust stage). The number of chips
that Player A decides to give is multiplied by 3. Then Player B can give back some or
all of what he was given (reciprocation stage). The subgame perfect equilibrium for this
game is for both types of players to send nothing. Berg et al. conducted the experiment
with students (human subjects). As expected, the human subjects did not act according
to the subgame perfect equilibrium, and chips were transferred by both types of players.

Gneezy and Ariely [17] describe a variant of the investment game which includes
an additional revenge phase. In their experiment, each of the two players starts off with
$10. The first player has to decide whether he wishes to end the game or to pass the
full amount to the second player. If he decides to pass his money, the second player
receives an additional $40 for a total of $50. Now the second player needs to decide
whether to keep all of the money or to give half of the money back to the first player.
If the second player decides to keep all of the money for herself, the first player may
decide to take revenge on her and pay any amount from his own private money (up to
$25); this amount is multiplied by 2 and subtracted from the second player’s revenue.
Gneezy and Ariely’s experiment showed that the first player often took revenge on the
second player (when the second player kept all of the money for herself).

We use a variant of the game used by Gneezy and Ariely: the Trust-Revenge Game.
This game is composed of three stages: Trust, Reciprocate and Revenge. This game
is a ”one-shot” game, i.e. after the three stages are completed, the game terminates
(there are no repeated interactions). There are two types of players (A and B) in the
game. At the beginning of the game Players A and B are both given a certain number
of chips. The first stage is the Trust stage, where Player A is able to give any portion of
his chips to Player B. There is a factor - the Trust Rate (tr) - by which the number of
chips is multiplied when they are passed from Player A to Player B. The second stage
is Reciprocate: after the chips have been transferred to Player B, Player B can decide
how many chips to transfer back to Player A. Player B can transfer any number of chips
(which she acquires) to player A. The third and final stage is Revenge: Player A plays
another round in which he may pay any number of chips he has to the operator. Note
that the chips are not transferred to anyone, merely subtracted from Player A’s stack.
However, in this round, Player B must pay a factor - Revenge Rate (rr) - on the number
of chips Player A chose for revenge. Again, the chips are not transferred to anyone,
merely subtracted from Player B’s stack. Both the Trust Rate and the Revenge Rate are
known to both players at the beginning of the game. Consider the following example:
Assume that and rr = 6. Assume that both players started with 10 chips. Trust stage:
suppose Player A gives 5 chips to Player B. After applying the Trust Rate, Player B will
receive 20 chips (5 · tr). Reciprocate stage: suppose Player B decides to give 7 chips to



Player A. At the end of this stage Player A has 12 chips (5 + 7) and Player B has 23
chips (30 − 7). Revenge stage: suppose Player A revenges 3 chips. At the end of this
stage (which ends the game) Player A has 9 chips (12 − 3), and Player B has 5 chips
(23− 3 · rr).

In this game there is a clear, unique subgame perfect equilibrium (SPE) strategy.
In the revenge stage, there is no rational reason for Player A to revenge, therefore in
the SPE there is no revenge. In the reciprocation stage there is no reason for Player B
to reciprocate since she assumes that Player A is rational and that he will not revenge,
therefore in the SPE there is no reciprocation. Therefore, in the trust stage there is no
rational reason for Player A to trust since he knows that Player B will not reciprocate.
Therefore the SPE says: ”don’t revenge, don’t reciprocate, don’t trust”. Since the SPE
expects a 0 chip action in each of the three stages, we refer to a positive transfer (or
payment) in each of the stages as expressing “emotions”. While the trust stage expresses
trusting and the revenge stage expresses revenging, the reciprocation stage can either
express reciprocation or fear of the other player’s revenge. We do not claim, though,
that actual emotions are the only explanation for a positive number of chips transferred.
Obviously human subjects do not use the SPE and they show all of the “emotions”
mentioned, We will examine what the agents do: Is human emotion embedded in the
strategy of the agents?

We had a different set of 37 undergraduate computer science students compose au-
tomated agents for the Trust-Revenge Game. Each agent played twice against all of the
other agents, once as Player A and once as Player B. The same students also played the
game themselves via the web against other human subjects (not against agents). The
students’ grades depended on their agents’ performance and its documentation. The
agent’s performance was measured according to its final result (relative to the number
of chips) and did not depend on the opponent’s performance or on the average perfor-
mance. The students were explicitly informed of this grading policy. Their performance
as humans in the web-based game was added as a bonus to their agents’ performance,
assuring that the incentive to play well was identical in both cases. The students knew
that the automated agents would play with other automated agents, and, when playing
on the web, they knew that they were playing against a human, however they did not
know against whom they were playing and we assured them that this information would
remain confidential. Table 1 shows the 3 settings that were used.

Settings Player A Player B Trust Revenge
Index Initial Initial Rate Rate

1 10 10 3 3
2 10 10 6 6
3 20 0 6 6

Table 1. Settings Used in the Trust-Revenge Game

In this experiment we chose to have the same group of students who programmed
the agents also play the game themselves as human subjects. The students first pro-
grammed their agent and then played the game themselves. We did so for the follow-



ing reasons: 1. The Trust-Revenge game requires some familiarity with the population
which each player is facing. Without this familiarity it is very hard to anticipate what
the other player would do and therefore hard to know whether to trust her or not. 2. By
having the students first build their agents and then play we guaranteed that the human
subjects understood the game at least as much as the automated agents’ programmers
did. 3. Having the exact same group playing both as humans and programmers elimi-
nates any culture or education bias.

We tested both the percentage of players that gave away chips in each stage of the
game (Fig.4) and the number of chips transferred (or paid) on average at each stage
(Figure 5). The transfer of chips in the first stage expresses trust, in the second it ex-
presses either reciprocation or fear of revenge, and in the last stage it expresses revenge.
As can be seen in Figures 4 and 5, all “emotions” are expressed both by the human sub-
jects and by the automated agents. Although it is clear that there is a substantial degree
of “emotion” expressed by the agents, they still clearly express less “emotion” than the
humans.

Another important insight we would like to mention is that using the SPE when
playing versus humans or automated agents doesn’t yield the highest outcome. As can
be seen in Figure 5, on average Player B reciprocated more than Player A trusted, with
both humans and automated agents. No Player B ever reciprocated if Player A did not
trust; therefore on average Player A gained from trusting (unlike the SPE which requires
that there be no trust at all).

However, the Revenge stage is different. We know from the documentation we col-
lected from the students who designed the agents that they understood that revenge
would lower their final profit and that it was not beneficial in this single-shot game. Yet
we were surprised to find that they still designed agents that revenge.

6 Discussion and Conclusions

Scientifically designed automated agents or automated agents designed by experts often
implement a fully rational strategy. However, most pieces of software are written by am-
ateurs (programmers with no more than a Bachelors’ degree in computer science) and
therefore are likely to ”suffer” from the same irrationalities as humans (but to a reduced
extent). Indeed, just as agents designed by experts behave more rationally, humans who
acquire vast experience in a game become more rational players [33,12].

In all settings and environments that we tested, the automated agents exhibited irra-
tional behavior. Agents paid chips or spent time and resources even though this is not
considered rational behavior. The type of irrational behavior displayed by the agents is
the same as the human irrationality, but to a lesser extent. Most surprisingly, even when
the rational behavior was clear to the agents and irrational behavior consisted of a clear
loss of utility, agents still exhibited irrational behavior (as was the case for the revenge
stage of the third game). We would like to note, that while in the first two games the
agents were much closer to the rational behavior than to human behavior, in the third
game the opposite occurred. We suggest that this is because that the third game involved
emotions, and therefore the players’ subjective utility was different than the actual ex-
pected final stake. E.g. a human may gain subjective utility from the feeling that justice



Fig. 4. Percent of Players Using Each Stage

Fig. 5. Average Action in Each Stage (in chips)



is being made when he revenges, and therefore embeds this behavior in his agent. Quan-
tifying and predicting the level of automated agents irrationality in comparison to that
of humans is a topic for future work.

When building an automated agent that needs to interact with other automated
agents, one needs to take into account that the other automated agents are very likely to
show irrationalities that can be observed in humans. Assuming that other agents behave
rationally when they actually do not, inhibits performance. In poker, for example, it is
very likely that automated agents will exhibit attributes that humans use when play-
ing, which many times aren’t rational, such as over-bluffing. In electronic commerce,
automated agents may be influenced by anchoring or the “sunk cost” effect. However,
our results indicate that the automated agents are expected to show a smaller degree of
these irrational behaviors. Therefore, considering human behavior when constructing
an automated agent for playing poker, for electronic commerce or for other domains
seems to be a promising approach.
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