Parallelism for Beginners with Fun Examples*

*Lightning talk

Raphael B. Yehezkael (Haskell) Flexible Computation Research Laboratory - FLEXCOMP Lab Jerusalem College of Technology Jerusalem, Israel rafi@g.jct.ac.il

Abstract—

Fun examples for demonstrating parallelism to beginners are presented:

- Assembling in parallel a 3D jigsaw puzzle ball.
- Parallel sorting of binary coded numbered cards.
- The twenty-one card trick and its generalizations

Keywords—

Parallelism, Flexible algorithms, Flexible computation.

I. INTRODUCTION

It is challenging to introduce parallelism to complete beginners. The examples used need to simple and yet allow a parallel solution. With the first example, children can participate in the parallel activity. The second example can be demonstrated to children as a magic trick. The third example is suitable for first year university students and (gifted) students in their final year of secondary/high school.

II. THE FUN EXAMPLES

A. Assembling in parallel a 3D jigsaw puzzle ball

The pieces are numbered on the reverse side.

This is how we can work on this in parallel:

a) Divide the pieces into piles:

Pile of pieces numbered 1 to 9 Pile of pieces numbered 10 to 19 Pile of pieces numbered 20 to 29 Pile of pieces numbered 30 to 39 Etc.

b) Assemble pieces in each pile - done in parallel (or sequentially).

c) Join the partially assembled sections of the ball together - done in parallel (or sequentially).

Can final year students find such a solution? Please ask your students and let me know the outcome.

B. Parallel sorting of binary coded numbered cards

Binary numbers are coded on the edge of the card by means of slots and holes.

Now watch this video: <u>VIDEO_1.mp4</u>

This was shown to me when I was in secondary/high school without any mention of parallelism!

C. The twenty-one card trick and its generalizations

Cards are dealt row by row into 7 rows by 3 columns. The full presentation contains explanations (including videos) as to why this trick works.

It also contains:

- Exercises to implement this solution sequentially and in parallel.
- An inductive proof that the trick works whenever both the number of rows and columns are odd. i.e. cards dealt row by row into (2m+1) rows by (2n+1) columns. m, n are positive integers.

Here is the link to the full presentation: ParBegFun (slides).pdf

III. CONCLUSION

First examples and exercises should have similar sequential and parallel solutions. Preferably they should be solvable without a computer and parallelism should be introduced or demonstrated at the very beginning. (Many such examples can be found in our course notes about Flexible Algorithms [1] and a survey of this course appears in [2].)

References

- R. B. Yehezkael, "Flexible Algorithms: An Introduction", Course Notes, Jerusalem College of Technology, Revised 2013 - השע"ג - Available at http://homedir.jct.ac.il/~rafi/flexalgo.pdf
- [2] R. B. Yehezkael, "Flexible Algorithms: Overview of a Beginners' Course", IEEE Distributed Systems Online, vol. 7, no. 11, 2006, art. no. 0611-oy002. Available at http://homedir.jct.ac.il/~rafi/oy002.pdf