
WSEAS CSCC Conference, Corfu, Greece, July 2003 ה"ב

Defining Parallel Automata and their Conflicts

H.G. Mendelbaum1, R.B. Yehezkael1 (formerly Haskell), T. Hirst1, A. Teitelbaum1, S. Bloch1,2
1Jerusalem College of Technology - POB 16031 - Jerusalem 91160

2Univ. Reims, RESYCOM, Reims, France
Email: {mendel, rafi}@mail.jct.ac.il simon.bloch@univ-reims.fr

Abstract: We define and classify a family of parallel
automata (for Real-Time and Telecommunication
modeling) in the context of a synchronous execution.
First, an abstract form of Parallel automata is proposed
as a generalization of various "Extended-Finite-states-
Machines" found in the literature. Then, two
implementable forms of Parallel Automata are presented
: A "global Parallel automaton with private states" and
sets of " Synchronous and Hierarchic Parallel automata
with local states". An example of application is
presented with these two formalism.
We also define and classify various types of possible
conflicts that can occur in Parallel automata. An
example shows an application with various kinds of
conflicts and their possible correction.
In a companion paper [17], we have shown that a-priori
detection of actual conflicts for parallel automata is P-
space hard. In view of this, an approach for a-priori
potential conflict detection is developed. The complexity
of detecting potential conflicts is shown to be possible in
polynomial time, if all automata conditions are
conjunctions.
An a-posteriori testing methodology is presented, using
an execution platform for Parallel Automata that
prevents conflicts at execution time.

Keywords : Parallel Automata, Conflicts in Parallel
Automata, Extended-Finite-states-Machines, Timed
Automata

1. Introduction
For parallel or distributed applications in Real-Time and
Telecommunication modeling, each branch of a parallel
application or each processor of a distributed application
has its own behavior, and can be described separately by
a different automaton with its own local states. So a
parallel application can be represented by a set of several
simple sequential interacting automata. But in this case,
the problem is the complexity of describing the
synchronizations between the various interacting simple
sequential automata, and also the problem is the
verification that their interactions produce an execution
without conflicts corresponding to the global
requirements of the application.
This brings to the idea of describing the
parallel/distributed application by a parallel automaton
with its parallel events (and their synchronizations), and
all the parallel actions. This approach leads to define a
new kind of automaton that allows describing the
receiving of multiple events in parallel, and the

activation in parallel of multiple actions. The problem is
that the number of states of such a global automata
would explode because of three causes:
(1) to take into account the synchronizations between
several events
(2) to differentiate the same actions/events that occur in
various different situations (or branches)
(3) to take into account all the possible values of
variables and clocks.
In an earlier work Mendelbaum and Yehezkael [1]
introduced the concept and a notation for “timed parallel
automata” and it was conjectured that the conflicts of
such automata could be detected a priori
In this paper, related works on proposed extended
automata models are first compared. The concept of
“abstract parallel automaton” is described as a
generalization of the main kinds of extensions of finite
state machines.
Then various kinds of conflicts that can occur in parallel
automata are discussed, such as: events, conditions,
actions or variable-updates, which should not arrive in
the same cycle of the automata scanning; each scan is
performed, supposing the synchronous hypothesis [2] for
the execution of these automata: i.e. each scan is done
when receiving a periodical tick of the central clock, so
that all the events, conditions and actions are treated
completely during each indivisible periodic cycle.
A classification of conflicts is proposed and their
solution is handled a-priori using theoretical results. and
a posteriori using SPHAX, an execution platform
designed by Teitelbaum [18], for executing timed
parallel automata..

2. Introducing the concept of Parallel
Automaton
First, let us compare, in the literature, various proposals
of extensions to sequential automata, in which
parallelism, synchronization and timing features were
introduced. All these extensions can be viewed as
extensions of Mealy State Machines, i.e. using sets of
registers for events, states, actions etc... and a table
containing transition functions of the minimal form :
 event, state → action, newstate.
Extensions to sequential automata were proposed in the
literature as theoretical models, which are important, but
we are interested in applying these models of extended
automata in parallel applications for real-time and
telecommunication.

 2

2.1 Adding Conditions to the state:
 In an early research (1974-77), Mendelbaum[3]
proposed a generalized model of Mealy Machine
associated with Petri-nets, for the scheduling of
synchronized processes of chemical plants.
This extended model adds to the Mealy Machine, a finite
set of boolean conditions cn. The transition function of
this extended automata is of the form
 em,sk,cn,!cp… → ai,sr,!cq,ct…
This kind of automata has a global state, like the classical
Mealy Machine, it helps in describing synchronizations,
using the boolean conditions cn as semaphores. The
receiving of parallel events is done by recording their
arrivals each one in a given state of the machine or using
these conditions.
2.2 Adding variables to the state EFSM
Other extensions to FSM have been proposed [e.g. 4-7] :
an n-dimensional linear space D can been added to the
finite sets of events, states and actions.
The transition function of this automata is of the form
 em,sk,dn,… → ai,sr,dt, ...
For instance , in the case of a micro-controller [4], the
space D can be made of a set of registers.
This kind of automata too has a global state as regular
FSM, but it helps in describing synchronizations using
arithmetic conditions. It has been used in chip design,
and in various protocol specification and analysis.
2.3 Adding clocks to the states
Alur and Dill [8] proposed to use "timed automata" to
model the behavior of real time systems. Clocks are
added to finite automata and timing constraints are put
on the arcs of its state transition diagram.
These transitions could be represented by
 eq, sp, condn(clockm) → ak , sj , reset(clocki).
Timed automata may be converted to untimed automata,
existing minimization and testing techniques may be
applied or adapted to timed automata -see for instance
Bloch et al. [9,10], Springintveld et al. [11].
2.4 Parallel graphs to represent multiple states
2.4.1 Stotts et al.[12] proposed a model of PFA (parallel
finite automata) which is based on a modified
interpretation of Petri-nets, it has a finite set of nodes
(with initial and final nodes), a finite set of states (with
initial states), a finite set of inputs that we call events in
our common representation,
The transition-functions (= node transitions of the
graph), can be written: ei,{n2,n5,..etc..} → {n4,n6,..etc
}
In fact, this model (which is an extension of the Moore
automata) seems to extend the concept of a unique
machine state, but here the state is represented by several
nodes which can be active in parallel, when an event
occurs. The transition-functions perform an action and
switches the state of the machine by activating new
node(s).
2.4.2 Badler et al.[13,14] use also an extension of Petri-
nets called PAT-NETS (Parallel Transition Networks)
for the representation of the movements of human bodies
in virtual reality. Each part of the bodies can move in

parallel, but in synchronization. In this extension of
automata, they represent the parallel moves using a
parallel graph which shows also an extension of the
global state concept to simultaneous states.
2.5 Extending Automata for several events and
multiple actions (I/O automata)
2.5.1 Bob Harms [15] proposed an extended automaton
that can take into account the arrival of several events,
for this he used an extension of a Turing Machine which
can read, each time, characters coming from several
tapes in parallel. The machine has one global state, and a
memory with statements such as :

evgr, evph,stj → acti, stk
He used such a machine to model the human language, in
which you have to take into account both the grammar
(evgr) and the phonology (evph) of a sentence.
 2.5.2 Nancy Lynch [16] has used an extension of
automata formalism using multiple inputs, timers and
variable conditions, and multiple outputs. She uses this
rather as a formalization of distributed algorithms, than
for building executable automata specification.

In this short literature review, we saw the main kinds of
extensions to the Mealy model, we found extensions to
automata using data variables[4-7] or conditions [3], or
states[12-14], to express parallelism of events[15],
parallelism of actions and synchronizations [15-16],
expression of constraints on time [8-11].

2.6 Synthesis and Generalization of these Automata
Extensions into an abstract form
In the original Mealy sequential machines the state
variable is unique and global to the whole machine, it
represents the stage that the application has reached at a
certain point of the execution, and allows to differentiate
the occurrence of events in different situations.
In a generalized representation of parallel applications,
what is the meaning of state variable(s) ?
� If we see the application as a collection of parallel
branches, we can say that each branch will have a local
state variable to represent its progression and to
differentiate the occurrence of events in this branch.
Each branch can be considered as a sub-automata in the
main automata of the application. In this case, the
application will have a collection of state variables which
can be associated each one to a different branch.
� If we see the application globally as a collection
of parallel independent transitions “conditions →
actions”, without explicit branches, the state variables
will only differentiate similar conditions which provoke
different actions according to various situations in the
whole application.
Any way, in a generalized form we can represent the
state variables as ordinary data that can be tested in the
conditions as other data, events or clock values, they
would not be necessarily coupled with events as in
classical sequential automata.
What we see from all the reviewed proposals of
extension, is that, from a formal point of view, all the

 3

transition-functions of the automata can be represented
as

Boolean compound condition → ππππk / assignk /
meaning that when the Boolean compound condition
holds (testing of external input signals, events, state
variables, values of data , clock values etc…), then the
parallel assignment assignk of values to a set of variables
will be performed. All the events, states, variables,
actions, clocks will be represented as valued variables.
a. the states will be considered themselves also as
conditions and will be represented as general variables,
b. the actions will be considered as assignment of
values to variables (data or clock values (for instance
clock-reset), set of calls of actions (functions), output of
signals or events, change in state variables, etc…)
An example of an abstract parallel automaton description
of an application can be :
/event1=1/ /event2=0/ /state1=2/ /clock1>100/
 → /action3:=1/ /output3:=3/ /state2:=5/ /clock1:=0/
meaning:
 when event1 arrived and not event2 while
state1=2 at time clock1>100
 then do action3, send output3 with value 3, set
state2 to 5, and reset timer clock1
remarks :
1) In the above example the left hand side of the rules
should be understood as a conjunction.
2) In order to control the timing of execution, the
'Parallel Automaton' has to be executed in a synchronous
way, in the sense that it is activated at intervals of time
∆t, at each time ∆t, all the events (variable conditions,
clocks, in their respective states) are taken into account,
the automata-table is scanned, all the corresponding
actions are performed simultaneously and must finish
before the next ∆t. This means that there is one internal
timer dealing with the scanning of the automaton, and
external clocks used to measure the progression of the
application.
3) A subset of the Parallel Automaton is the Mealy
machine in which there is only one state register, this
means that the machine is running only one thread of
execution, and that it has one (global) state. A typical
rule of a Mealy automaton would be written in the form:
/?event_received="event1"/ / current_state="state2"/

→ /!action10:=1/ /current_state:= "state12"/

2.7 Implementable parallel automata derived from
abstract parallel automata
There can be various implementations, for instance:
� ‘Global Parallel Automaton with private states’ :
an application can be represented globally as a unique
parallel automaton which describes the whole
parallel/distributed application corresponding to its
requirements, and takes into account all the parallel
events and actions each one in their own private states to
differentiate various branches or events or actions, or
processors. These events/actions private states enable to
avoid the explosion of the number of states, since it

allows to deal separately with the 3 above points: events
synchronization (each one in its private state),
event/action differentiation (each state would then be just
the occurrence number of the event/action in its branch),
variable/clock values (each variable/clock would change
its state only when they are required in a new case by the
application).
� ‘Parallel Hierarchical Automata with local
states’: an application can be represented as a hierarchy
of several parallel automata: each one having a local
automata state, and representing a different parallel
branch (or component) and a main automata
synchronizing them. Each parallel automata can handle
parallel events or actions using the automata local state.
So, here also, there is no explosion of the number of
states, since each hierarchical automata has his own local
states and synchronizations.
Remarks: It could be seen as a paradox, that a good way
to describe a parallel/distributed application is to use a
single (centralized) description, not several descriptions
corresponding to the various parallel/distributed parts.
But this way has advantages because it gives an overview
of the global situation.
a) Regrouping the requirements allows to
enumerate, reduce and solve, in an easier way, the
interaction problems between the various branches
(common events),
b) There is no need to deal with the problems of
differentiating the handling of the same events/actions
that can occur in various (synchronized) branches, during
the progress of the application.
c) Finally, it can also reduce the necessary number
of variables and clocks.

2.7.1 Description of a ‘Global Parallel Automaton
with private states’
In the global parallel automata, each parallel action/event
is coupled with a “private state” representing the
action/event occurrence number in the application. The
number of states is finite. There is no explosion of the
number of states since the states are limited to each pair
action/event.
Synchronizations can be described by a product of pairs
/evti,privateSi/ without changing the states to record the
arrival of the events. There is no need at all for a global
state in the automaton, i.e. for the whole application,
only private states for each couple event/action or for
each branch in the whole application .
Each transition of the 'Global Parallel Automaton'-table
is written in a product form:

ππππi /condi, PrivateStatei/ → ππππk /actionk,newPrivateStatek/
which means that for each transition a set of parallel
conditions condi (each one in its own Private State) can
provoke the execution of a set of parallel actions actionk
with new Private States.

Definitions :

 4

 condi are boolean relations, it can be an event, an input
signal or an input flag (true or false) noted for instance
 " ?evt1 ", it can be a variable condition e.g. "v >= 10",
or it can be a clock condition e.g.
"100<=clock(x)<=200".
actionk are execution of actions, it can be an output flag
e.g. " !out3 ", it can be the execution of a function , for
instance send Event " ! go " or " changeState(g)", it can
be the setting of a value to a variable e.g. "setvar(v, 18
)", or it can be the setting of a value to a clock e.g
"setclock(b , 100)" or . "resetclock(b)".
Translation to the abstract general form
For instance a transition such as :
 / evt1 , 0 / /var1>3, 2/ → / send evt3 , 4/ /do act0, 5/
will be translated in an abstract form of :
 / ?evt1=1/ /s1=0/ /var1>3/ /s2=2/

→ /evt3:=1/ /s3:=4/ /act0:=1/ /s1:=5/

2.7.2 Description of a set of ‘Parallel Hierarchical
Automata with local states’
if an application can be represented as a hierarchy of
several parallel automata made of a main automata
synchronizing sub-Automata. Each parallel automata has
its own local state to manages its events/actions, and can
activate sub-automata. So, here also, the number of
states of each automata is finite. There is no explosion of
the number of states, since each hierarchical automata
has his own local states and synchronizations.
Here also, the local state of each automata will change,
only in two cases :
• Each time when the same pair act1 → /evt1,S1/
occurs in different situations in the local automata,
• When the same variable or when the same clock is
reset and used in different situations, in the local
automata .
Each transition of a local ‘Hierarchical Automaton’-table
is written in a product form:

ππππi /condi/ , LocalState

 → ππππk /actionk,ππππn /subAutomn(subStatem)/, newLocalState

which means that, for a local automata state, a set of
parallel conditions condi can provoke the execution of a
set of parallel actions actionk with a new Local automata
State, and activate a set of sub-automata each one
starting in its own local state m.
The same definitions apply :
 condi are boolean relations, it can be an event, a signal
or an input flag (true or false) , a variable condition or a
clock condition .
actionk are execution of actions, it can be an output flag
or the execution of a function , or the setting of a value to
a variable, or the setting of a value to a clock .

2.8 Examples of implemented parallel automata

Let's take the classical train/gate crossing
control example: A railway is crossing a road, a gate
lowers down when a train is passing to avoid accidents
with cars on the road, and raises up, when the train has

exited the crossing. The system was represented by
Allur and Dill [8] as composed of three components
(3 communicating independent timed-automata) working
in parallel : the train, the gate and the controller.

To make the example more implentable and to
separate clearly the events from the actions, we have
added physical switches which send events to the
automata (Switch_TrainArrives, Switch_trainLeaves,
Switch_gatedown, Switch_gateup), orders which perform
actions (for the train let_in , don’t_let_in , for the gate lower,
raise), and flags to synchronize the various automata (for
the train Approach, isout, exited, for the gate isdown, isup).

2.8.1 A solution using a set of "Synchronous Parallel
hierarchical Automata with local states" representing
the 3 automata corresponding to the components
CONTROLLER, TRAIN, GATE, using three clocks x,
y, z (one per component) :
ππππi /condi/ , State LSi

 → ππππk/actionk/,ππππn/subAutomn(subStatem)/
 , newState LSj

MAIN AUTOMATON :
1 /?Init/, LS 0

→/Train autom(LS 0)//Controller autom(LS0)/
 /Gate autom(LS 0)/,LS 0

TRAIN AUTOMATON
2 /?Init/, LS 0

→ /! don’t_let_in /, LS 0
3 /? Switch_TrainArrives/, LS 0

→ /! Approach/ /resetclock(x)/,LS 1
4 /?isdown/ /3<= clock(x)<=5/,LS 1

→ /! let_in/,LS 2
5 /? Switch_train leaves/ /clock(x)>=5/, LS 2

→ /! isout/,LS 3
6 /?isout/ / clock(x)>=5/,LS 3

→ /! exited/ /! don’t_let_in /,LS 0
CONTROLLER AUTOMATON :
7 /?Approach/,LS 0

→ /resetclock(z)/,LS 1
8 /clock(z)=1/,LS 1

→ /! Lower/,LS 2
9 /?exited/,LS 2

→ /resetclock(z)/,LS 3
10 /clock(z)=1/,LS 3

→ /! raise/,LS 0
GATE AUTOMATON :
11 /?Lower/,LS 0

→ /resetclock(y)/,LS 1
12 /?Switch_gatedown/ /clock(y)=1/, LS 1

→ /! isdown/,LS 2
13 /?raise/,LS 2

→ /resetclock(y)/,LS 3
14 /?Switch_gateup/ /1<= clock(y)<=2/, LS 3

→ /! isup/,LS 0

 5

Explanation:
line 1: The MAIN AUTOMATON starts the 3

component-automata in their initial local states LS
0.

line 2: The TRAIN AUTOMATON starts by sending a
don’t_let_in event to the rail (meaning lighting a
red semaphore, so that the trains cannot enter the
crossing).

line 3: When a train arrives it activates on the rail the
Switch_TrainArrives, this sends the Approach
event to the CONTROLLER AUTOMATON and
starts the clock x.

line 7: When the CONTROLLER AUTOMATON
receives the Approach event , it starts its own
clock z to wait for 1 minute, and then it sends the
event Lower to the GATE AUTOMATON.

line 11: When the GATE AUTOMATON receives the
Lower event, it starts its clock y to wait for 1 min
and for the Switch_gatedown (meaning that the
gate is already down). When these two conditions
occur, it sends the event isdown to the TRAIN
AUTOMATON.

line 4: When the TRAIN AUTOMATON detects the
isdown event in a time between 3 min<=
clock(x)<=5 min, it can send the event let_in to
the rail (meaning lighting a green semaphore, so
that the trains can now enter the crossing).

etc...

2.8.2 A solution using a "global parallel automaton
with private states" representing the synchronizations
of all the 3 components in one automata, using 2 clocks
(x for the train and y for the gate):

ππππi /condi, PrivateState PSi/ →

ππππk /actionk, newPrivateState PSk/
1 /? Switch_TrainArrives, PS 0/

→/newState(Switch_TrainArrives), PS 1/
/! don’t_let_in, PS0/ /resetclock(x), PS0/ /resetclock(y),

PS0/
2 /clock(y)=1, PS 0/
 → / ! lower , PS 0/ /resetclock(y), PS 1/
3 /?Switch_gatedown, PS 0/ /clock(y)=1, PS 1/
 /3<= clock(x)<=5, PS 0/ → / ! let_in , PS 0/
4 /? Switch_train leaves, PS 0/ /clock(x)>=5, PS 0/

→ /! isout, PS 0/
5 /? isout, PS 0/ /clock(x)>=5, PS 0/
 → /! exit, PS 0/ /! don’t_let_in , PS 0/
6 /? exit, PS 0/

→ /resetclock(x)), PS 1/
7 /clock(x)=1, PS 1/

→ / ! raise , PS 0/ /resetclock(y), PS 2/
8 /?Switch_gateup, PS0/ /1<= clock(y)<=2, PS2/
 →/newState(Switch_TrainArrives),PS 0/
Explanation:
In this type of notation, we don't need inter-automata
synchronization events, such as Approach, isdown, isup,
since the synchronizations are made by the global
automaton itself.

Line1: When a train arrives (signal
Switch_TrainArrives),
 the system blocks the Switch_TrainArrives of
another train by changing the private reception state
to 1 , furthermore it prepares two clocks for
measuring the timings of the train and of the gate ,
and it sends a don’t_let_in event to the rail
(meaning lighting a red semaphore, so that the
trains cannot enter the crossing).

Line 2: the system waits for 1 min to send the event lower
to the gate, the clock y is reset to prepare new gate
timing (in its new private state 1). The gate lowers.

Line 3: after 1min more and when the gate sent
Switch_gatedown., the system verifies if the train
clock x is between 3min<= clock(x)<=5min, if yes,
it sends the event let_in to the rail (meaning lighting
a green semaphore, so that the trains can now enter
the crossing).

etc...

3. Conflicts in Parallel automata
A major problem in the verification phase, is to detect
and analyze conflicts caused by the parallelism. Parallel
Automata are executed in a synchronous mode : So that
at each cycle of the synchronous clock, all the lines of
the parallel automata are scanned and eventually
executed during this clock cycle, depending of the
arrived events which occurred in the precedent cycle, or
depending on the conditions (of variables or of time)
which are true at this cycle. So, conflicts can appear
during a given same cycle of time:
• when several contradictory events or conditions

 occur,
• when contradictory actions are performed or different
values are assigned to the same variables.
In fact, in each case the conflict is detected at execution
time when reading flags (events flags or condition flags),
or when writing value to flags (actions or timers), or
writing values in variables. So, we can analyse these
conflicts as read/write (RW) and write/write (WW)
conflicts. In the general case, it is doubtful if algorithms
can be designed for detecting conflicts in parallel
systems, but in the case of finite state parallel automata,
we can give algorithms which can be used as a basis for
developing verification and testing tools.
The main conflicts are:
1) RW conflict.
2) WW conflicts are of two kinds.
(i) A strong conflict occurs when two or more
assignments of different values are made (pseudo)
simultaneously to the same location.
(ii) A weak conflict occurs when two or more
assignments of the same value are made (pseudo)
simultaneously to the same location We now consider
three kinds conflict free parallel automata:
1) Very strict conflict free parallel automata, do not have
any RW and WW conflicts and do not need any external
synchronization mechanism to ensure freedom from

 6

these conflicts. We will not discuss this notion further
here.
2) Strict conflict free parallel automata do not have any
(strong or weak) WW conflicts, and it is assumed that a
RW conflict never occurs because of the external
synchronization used, e.g. read and write cycles never
overlap.
3) Lenient conflict free parallel automata, are like the
strict ones, but may have weak conflicts. Weak conflicts
should be reported as a warning, as it is up to the
programmer or designer to decide whether or not it is
possible for the application and hardware to run correctly
with weak conflicts.

4. An example of an automaton with
conflicts
Let us define a coffee, milk automatic vending machine
in which :

� -there is a place to insert coins , the machine can
recognize the coins to sum them up, each time a
coin is inserted it produces the event coin(A)
with the value A;

� -there are two buttons that give the events coffee
or milk to choose the desired beverage, and a
button that gives the event cancel to return the
sum inserted;

� -there are two functions pourCoffee and
pourMilk to give the desired beverage, and a
function returnMoney to return the (remaining)
inserted sum

Here are the rules of a parallel automaton without
conflict error for it:
1 /? coin(A), PS 0/

→ /sum:=sum + A, 0/
2 /? coffee, PS 0/ /sum>=coffeeprice, PS 0/

→ / pourCoffee, PS0/ /putSugar, PS0/
 /returnMoney(sum - coffeeprice), PS 0/
 /sum:=0, PS 0/

3 /? milk, PS 0/ /sum>= milkprice, PS 0/
→ / pourmilk, PS 0/ /putSugar, PS 0/

 /returnMoney(sum - milkprice), PS 0/
 /sum:=0, PS 0/

4 /? cancel , PS 0/
→ / returnMoney(sum), PS 0/

the first line can be activated several times, each time a
coin is inserted,
the 2nd or 3rd line can be activated when there is enough
money,
the 4th line can be activated at any time, but will give
back money or not according to the value of sum.

Let us modify the machine and add a button capuccino to
obtain a coffee-milk beverage.
As a first idea, let us add a single supplementary line in
the automaton specification, in order to activate in
parallel the lines 2 and 3 :
5 /? capuccino , PS 0/

→ / ! coffee , PS 0/ / ! milk , PS 0/

This shows how lack of attention to detail can introduce
weak and strong conflicts in the execution of lines 2 and
3, which will run in parallel. Strong conflicts : wrong
conditions will be tested on the prices, and wrong sums
will be returned, weak conflict : putSugar will be
activated simultaneously twice (depending on the
hardware, it will actually put one or two sugar(s).
A better idea is to modify the initial automaton to avoid
all the conflicts, by adding 3 lines:
5 /? capuccino , PS 0/ /sum>=capucprice, PS 0/

→ / ! coffee , PS 1/ / ! milk , PS 1/
 / returnMoney(sum - capucprice), PS 0/

6 /? coffee, PS 1/
→ / pourCoffee, PS 0/ /putSugar, PS 0 /

7 /? milk, PS 1/
→ / pourmilk, PS 0/ /sum:=0, PS 0/

by changing the private states of the coffee and milk
events we can activate the 6th and the 7th lines in parallel
instead of the lines 2 and 3 which will remain only
sequential . So, changing (in line 5) the price condition to
test and returning money only once. Then putting sugar
and resetting the sum variable are made afterwards in
line 6 and 7.

5. An execution platform for parallel
automata for handling conflicts at run-time
 Another way for conflict handling is building a
parallel automata based executor, which prevents/alerts
at the running stage, the execution of conflicts.
Definition:
Synchronized Parallel Hierarchic Automata executor
(SPHAX)[18] is a robust execution platform for parallel-
automata running. The automata and their
interconnection are defined by a set of functions, and
saved in a system table. The system executor scans
the system table one time in a cycle, and reacts according
to the rules of transitions defined. The reactions are
executed sequentially, but the automata run in parallel,
since all their transitions are executed during the same
cycle.
The system structure is hierarchic. This means that an
automaton may contain sub-automata in a state. The
lifetime of the sub-automata is equal to the time delayed
in the super-automata container state.
Implementation:
For an implementation, a Virtual Machine is designed as
a platform to run the 'Parallel Automaton'.
The following components are defined for the SPHAX
implementation:
• An Automata-Table, where all transitions of all
automata are defined. The transitions are grouped by
their trigger (a combination of events and conditions) at
different states. Each group is called Entry and each
Entry becomes a line in the Automata-Table.
• A set of System-Clocks, that they automatically
increments between the cycles. The user can only read
or reset these clocks.

 7

• An Interrupt-Handler that can receive either external
events or data. The External events/data causes to
emission of internal events or putting data to internal
pipes. Internal events are saved in the Global-Event-
Flag-Array.
• An Automata-Processor, which is activated at the
beginning of each cycle. . The Automata-Processor
scans the Automata-Table for each automaton Ai , and
records for each Entry of the current state Sb , the
incoming relevant events into the entry’s Local-event-
Flag-Array (efi). When all expected events arrived (not
necessary in the same cycle) the Condition (Cj ^ vk see
following definitions) is checked and if is it true the
reaction of the Entry is activated. The Condition may be
combined by: a condition based on clocks (Cj) and a
condition based on variables (vk) . The entry’s Local-
event-Flag-Array is reset even if the Condition was not
true.
• When the Entry is activated, the reaction (function
rn)) is executed. The Entry reaction is followed by the
output of events (eq) , and by the automaton current state
update to Sd. If the new or old state holds sub-automata,
sub-automata will be activated (+Az) or deactivated (-Ay)
respectively.
Each transition of the 'Parallel Automaton'-table is
written in a product form:
/event-flags, conditions/ /state/

� /reaction,output/ /new subAutom/ /new state/
/π (efi) ^ Cj ^ Vk / / Sb /

 � / rn ^ π(eq)/ / -Ay+Az / / Sd /
And it is read as following:
When all the expected events π(fi) arrived and the
conditions cj ^ vk is true, then the automaton reacts
according to its current state Sb by executing a reaction
function rn, emitting output-events π(eq), updating its
state Sd and activating and deactivating automata -Ay+Az
.
Robustness :
 In order to ensure correct execution, the system makes
efforts to stabilize the environment during the cycle, and
making all changes between the cycles.
During the cycle all incoming events are delayed to the
next cycle. The clock values are in cycle units, and they
maintain their values during the cycle. The automata
activation or deactivation is delayed to the end of the
cycle.
The value of the variables may be changed during the
cycle by the actions. Actions may be called in the same
cycle many times. The automata state may change
during the cycle.
The incoming relevant events are saved in flags by each
automata entry, in order to avoid flag erasing by another
automata. All variables are initiated to “no value”.
Reading a variable that contains “no value”, turns the
System Status Variable to “instable”.
According to these definitions, the reaction time of an
event is no more than 2 cycles, and the completion of all

reaction must be before the next cycle starts. If the
execution of the reactions overflows the cycle, the
System Status Variable turns to “instable”.
Conflicts management:
 Related to conflicts, the system avoids simultaneous
access to variables by the serialization of actions.
Moreover, the system detects also possible conflicts, by
checking for double assignment of variables in a cycle.
The same procedure is made for double calling of actions
in a cycle. In case of a detection of possible conflict in a
variable or in an action, the System Status Variable is
turned to “possible conflict”. A stricter way for handling
variable conflict is to assign a “no value” to the
conflicted variable. In order to avoid transition conflict,
the transitions are saved in the system table in an
ascending priority order. This method provides chance
for execution of high priority transitions first, since the
executor scanning is made in a pre-defined order.

6. A-priori detection of actual conflicts

In a companion paper [17], we have shown that a-
priori detection of actual conflicts for parallel automata
is P-space hard. We therefore develop an approach
based on potential conflicts.

6.1 Potential conflict

If the conjunction of the conditions of two rules is
satisfiable and their right hand sides may cause a
write/write conflict we say that the two rules are
involved in a potential conflict. Note that the run time
behavior is not considered at all, and that there may be
no actual conflict even though there are potential
conflicts. It is clear however, that if there are no
potential conflicts, there are no actual conflicts.

6.2 Detecting potential conflicts is possible in
polynomial time when all conditions are
conjunctions
Detecting potential conflicts appears to be
straightforward as can be seen from the following
algorithm, which is equally applicable to untimed and
timed automata.

potential_conflict:=false;
for every pair of rules
loop
if there exist values for

making the left hand sides
of the pair of rules true
and the same variable is
assigned (different values)
on the right hand sides of
the pair of rules

then potential_conflict:=true;
exit for loop;
end if;
end for;

Even though checking for potential conflict appears to be
straightforward, let us now investigate its complexity.
Checking pairs of conditions contributes a quadratic term

 8

to the complexity, and then we need to determine
whether the conjunction of a pair of conditions is
satisfiable.
As all the conditions are conjunctions of primitive
conditions, then so too is the conjunction of pairs of such
conditions. Fortunately, determining the satisfiability of a
conjunction of primitive conditions is easily done in
polynomial time as follows.

for each variable in the
condition
loop Form the intersection of
the ranges of values this
variable takes.
end for;
if all these intersections of
are not empty
then the condition is
satisfiable
else the condition is
unsatisfiable
end if;

Remark

In the companion paper dealing with theoretical
properties of abstract parallel automata [17], we show
that any abstract parallel automaton can be converted in
polynomial time into a nearly equivalent automaton with
no potential conflicts, with size proportional to the size
of the original automaton. The new automaton does not
execute any assignments involving conflicts. This means
of course that if the original automaton is free of
conflicts, the new automaton has no potential conflicts
and is equivalent to the original automaton.

7. Conclusion
1) A general form of extended finite-states-machine was
proposed, and two implementations were presented.
2) Several forms of conflicts were identified, and several
ways of dealing with this problem were proposed. An a-
priori conflict prevention approach, based on potential
conflicts, seems to be useful for dealing with these
problems. It is of importance that conversion to a form
with no potential conflicts is possible in polynomial time,
and the new automaton is proportional in size to the
original automata.
3) An important advantage of working with conflict free
automata is easier testing and debugging. When
transition rules are active simultaneously, the end result
does not depend on the order of activation. (In this way
they bear similarities to deterministic sequential
automata.) Thus all possible interleavings of concurrent
activities need not be considered, one is enough.
4) Parallel automata notation was easy to use for building
an execution platform and presenting proofs. It was hard
to use for programming purposes, since the default
behaviour is infinite looping (all rules are always active).
A better default behaviour is that a rule fires once only,
and on the right hand side we should indicate which
rule(s) if any should

Bibliography on related works

[1] " H.G. Mendelbaum & R.B. Yehezkael " Using 'Parallel
Automaton' as a Single Notation to Specify, Design and
Control small Computer Based Systems, 8th Annual IEEE
International Conference and Workshop on the Engineering of
Computer Based Systems (ECBS), Washington D.C., IEEE
April 2001
[2] Gérard Berry and Georges Gonthier "The Esterel
Synchronous Programming Language: Design, Semantics,
Implementation",. Science of Computer Programming vol. 19,
n°2, pp 87-152, 1992.
[3] H.G.Mendelbaum, F.Madaule “Automata as structured
tools for real-time programming” IFAC/IFIP workshop on real-
time programming, Griem Ed.,Boston, USA, 1975
[4] K.T.Cheng, A.S.Krishnakumar “ automatic generation of
functional vectors using extended state machine model” ACM
trans on design automation of electronic systems, vol 1, n#1,
jan 1996,p57-79
[5] M. Higushi “ a study on verification methods for
communication protocols modeled as ECFSM”, PhD thesis,
(Osaka univ), nov 1994, http://www-fujii.ics.es.osaka-
u.ac.jp/~higuchi
[6] Teruo Higashino et al. “Deriving concurrent synchronous
EFSM from protocol specifications in LOTOS”, Trans. IEICE
of Japan, 1999, http://www-fujii.ics.es.osaka-
u.ac.jp/~higashino
[7] D.Cypher, D.Lee, W.Martin-Villalba, C.Prins, D.Su :
“Formal specification, Verification and automatic test
generation of ATM routing protocol: PNNI” Proc
FORTE/PSTV'98,nov 1998, Paris
[8] Rajeev Alur and David Dill “ a theory of timed automata”
Theoretical Computer Science 126:183-235, 1994
[9] S. Bloch, H. Fouchal et al. “Timed and Untimed
Testing”,univ. reims, 1999 Simon.Bloch@univ-reims.fr
[10] Eric Petijean and Hacene Fouchal, "From Timed
Automata to Testable UntimedAutomata", RESYCOM lab.,
Univ. Reims, France
[11] J. Springintvelt, F. Vaandrager, P.R. D’Argenio “Testing
Timed Automata” cath. univ. Nijmegen, Netherlands, CSI-
R9712, aug. 1997, fvaan@cs.kun.nl
[12] D. Stotts,, W. Pugh “Parallel finite state Automata for
modeling concurrent software systems”Journal of systems and
software, Elsevier science, vol 27, 1994, p27-43
 [13] N.I. Badler et al “Behavioral control for real-time
simulated human agents” Proc. 1995 Symp. on interactive 3D-
Graphics, ACM press, New-York, USA, p.173-180
[14] R. Bindiganavale, B.J. Douville “C++ and Lisp PAT-nets
(Parallel Transition Networks)”, 1995,
ftp://ftp.cis.upenn.edu/pub/graphics/rama/patnets
[15] Bob Harms “ two-level morphology as phonology
(parallel automata, simultaneous rule application)”, Texas
linguistic Forum 35, fall ‘95 (harms@mail.utexas.edu)
[16] Nancy Lynch : "Distributed Algorithms", Morgan
Kaufmann Publ.,1996
[17] "Some Theoretical Results on Parallel Automata, Conflict,
Complexity", T. Hirst, R.B. Yehezkael, H.G. Mendelbaum,
JCT research report 2003, available at
http://sukka.jct.ac.il/~rafi
[18] A.H. Teitelbaum, “A unified methodology for the formal
design and execution of Real-Time applications”, JCT research
Seminar, 5/2/2002

