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Abstract: We define and classify a family of parallel 
automata (for Real-Time and Telecommunication 
modeling) in the context of a synchronous execution. 
First, an abstract form of Parallel automata is proposed 
as a generalization of various "Extended-Finite-states-
Machines" found in the literature. Then, two 
implementable forms of Parallel Automata are presented 
: A "global Parallel automaton with private states" and 
sets of " Synchronous and Hierarchic Parallel automata 
with local states". An example of application is 
presented with these two formalism.  
We also define and classify various types of possible 
conflicts that can occur in Parallel automata. An 
example shows an application with various kinds of 
conflicts and their possible correction.  
In a companion paper [17], we have shown that a-priori 
detection of actual conflicts for parallel automata is P-
space hard. In view of this, an approach for a-priori 
potential conflict detection is developed. The complexity 
of detecting potential conflicts is shown to be possible in 
polynomial time, if all automata conditions are 
conjunctions. 
An a-posteriori testing methodology is presented, using 
an execution platform for Parallel Automata that 
prevents conflicts at execution time. 
 
Keywords : Parallel Automata, Conflicts in Parallel 
Automata, Extended-Finite-states-Machines, Timed 
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1.  Introduction 
For parallel or distributed applications in Real-Time and 
Telecommunication modeling, each branch of a parallel 
application or each processor of a distributed application 
has its own behavior, and can be described separately by 
a different automaton with its own local states. So a 
parallel application can be represented by a set of several 
simple sequential interacting automata. But in this case, 
the problem is the complexity of describing the 
synchronizations between the various interacting simple 
sequential automata, and also the problem is the 
verification that their interactions produce an execution 
without conflicts corresponding to the global 
requirements of the application. 
This brings to the idea of describing the 
parallel/distributed application by a parallel automaton 
with its parallel events (and their synchronizations), and 
all the parallel actions. This approach leads to define a 
new kind of automaton that allows describing the 
receiving of multiple events in parallel, and the 

activation in parallel of multiple actions. The problem is 
that the number of states of such a global automata 
would explode because of three causes:  
(1) to take into account the synchronizations between 
several events 
(2) to differentiate the same actions/events that occur in 
various different situations (or branches)  
(3) to take into account all the possible values of 
variables and clocks. 
In an earlier work Mendelbaum and Yehezkael [1] 
introduced the concept and a notation for “timed parallel 
automata” and it was conjectured that the conflicts of 
such automata could be detected a priori 
In this paper, related works on proposed extended 
automata models are first compared. The concept of 
“abstract parallel automaton” is described as a 
generalization of the main kinds of extensions of finite 
state machines. 
Then various kinds of conflicts that can occur in parallel 
automata are discussed, such as: events, conditions, 
actions or variable-updates, which should not arrive in 
the same cycle of the automata scanning; each scan is 
performed, supposing the synchronous hypothesis [2] for 
the execution of these automata: i.e. each scan is done 
when receiving a periodical tick of the central clock, so 
that all the events, conditions and actions are treated 
completely during each indivisible periodic cycle.  
A classification of conflicts is proposed and their 
solution is handled a-priori using theoretical results. and 
a posteriori using SPHAX, an execution platform 
designed by Teitelbaum [18], for executing timed 
parallel automata..  
 
2. Introducing the concept of Parallel 
Automaton 
First, let us compare, in the literature, various proposals 
of extensions to sequential automata, in which 
parallelism, synchronization and timing features were 
introduced. All these extensions can be viewed as 
extensions of Mealy State Machines, i.e. using sets of 
registers for events, states, actions etc... and a table 
containing transition functions of the minimal form : 
 event, state  → action, newstate. 
Extensions to sequential automata were proposed in the 
literature as theoretical models, which are important, but 
we are interested in applying these models of extended 
automata in parallel applications for real-time and 
telecommunication.  
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2.1 Adding Conditions to the state: 
 In an early research (1974-77), Mendelbaum[3] 
proposed a generalized model of Mealy Machine 
associated with Petri-nets, for the scheduling of 
synchronized processes of chemical plants. 
This extended model adds to the Mealy Machine, a finite 
set of boolean conditions cn. The transition function of 
this extended automata is of the form  
 em,sk,cn,!cp… →   ai,sr,!cq,ct… 
This kind of automata has a global state, like the classical 
Mealy Machine, it helps in describing synchronizations, 
using the boolean conditions cn as semaphores. The 
receiving of parallel events is done by recording their 
arrivals each one in a given state of the machine or using 
these conditions.  
2.2 Adding variables to the state  EFSM  
Other extensions to FSM have been proposed [e.g. 4-7] : 
an n-dimensional linear space D can been added to the 
finite sets of events, states and actions.  
The transition function of this automata is of the form 
  em,sk,dn,… →   ai,sr,dt, ...  
For instance , in the case of a micro-controller [4], the 
space D can be made of a set of registers. 
This kind of automata too has a global state as regular 
FSM, but it helps in describing synchronizations using 
arithmetic conditions. It has been used in chip design, 
and in various protocol specification and analysis. 
2.3 Adding clocks to the states 
Alur and Dill [8] proposed to use "timed automata" to 
model the behavior of real time systems. Clocks are 
added to finite automata and timing constraints are put 
on the arcs of its state transition diagram.    
These transitions could be represented by    
        eq, sp, condn(clockm) →    ak , sj , reset(clocki). 
Timed automata may be converted to untimed automata, 
existing minimization and testing techniques may be 
applied or adapted to timed automata -see for instance 
Bloch et al. [9,10], Springintveld et al. [11].  
2.4 Parallel graphs to represent multiple states 
2.4.1 Stotts et al.[12] proposed a model of PFA (parallel 
finite automata) which is based on a modified 
interpretation of Petri-nets, it has a finite set of nodes 
(with initial and final nodes), a finite set of states (with 
initial states), a finite set of inputs that we call events in 
our common representation,  
The transition-functions (= node transitions of the 
graph), can be written:    ei,{n2,n5,..etc..}   →   {n4,n6,..etc  
} 
In fact, this model (which is an extension of the Moore 
automata) seems to extend the concept of a unique 
machine state, but here the state is represented by several 
nodes which can be active in parallel, when an event 
occurs. The transition-functions perform an action and 
switches the state of the machine by activating new 
node(s). 
2.4.2 Badler et al.[13,14] use also an extension of Petri-
nets called PAT-NETS (Parallel Transition Networks) 
for the representation of the movements of human bodies 
in virtual reality. Each part of the bodies can move in 

parallel, but in synchronization. In this extension of 
automata, they represent the parallel moves using a 
parallel graph which shows also  an extension of the 
global state concept to simultaneous states.  
2.5  Extending Automata for several events and 
multiple actions (I/O automata) 
2.5.1 Bob Harms [15] proposed an extended automaton 
that can take into account the arrival of several events, 
for this he used an extension of a Turing Machine which 
can read, each time, characters coming from several 
tapes in parallel. The machine has one global state, and a 
memory with statements such as :   

evgr, evph,stj  →  acti, stk 
He used such a machine to model the human language, in 
which you have to take into account both the grammar 
(evgr) and the phonology (evph) of  a sentence.  
  2.5.2 Nancy Lynch [16] has used an extension of 
automata formalism using multiple inputs, timers and 
variable conditions, and multiple outputs. She uses this 
rather as a formalization of distributed algorithms, than 
for building executable automata specification.  
 
In this short literature review, we saw the main kinds of 
extensions to the Mealy model, we found extensions to 
automata using data variables[4-7] or conditions [3], or 
states[12-14], to express parallelism of events[15], 
parallelism of actions and synchronizations [15-16], 
expression of constraints on time [8-11]. 
 
2.6 Synthesis and Generalization of these Automata 
Extensions into an abstract form 
In the original Mealy sequential machines the state 
variable is unique and global to the whole machine, it 
represents the stage that the application has reached at a 
certain point of the execution, and allows to differentiate 
the occurrence of events in different situations. 
In a generalized representation of parallel applications, 
what is the meaning of state variable(s) ? 
� If we see the application as a collection of parallel 
branches, we can say that each branch will have a local 
state variable to represent its progression and to 
differentiate the occurrence of events in this branch. 
Each branch can be considered as a sub-automata in the 
main automata of the application. In this case, the 
application will have a collection of state variables which 
can be associated each one to a different branch.  
� If we see the application globally as a collection 
of parallel independent transitions “conditions →   
actions”, without explicit branches, the state variables 
will only differentiate similar conditions which provoke 
different actions according to various situations in the 
whole application. 
Any way, in a generalized form we can represent the 
state variables as ordinary data that can be tested in the 
conditions as other data, events or clock values, they 
would not be necessarily coupled with events as in 
classical sequential automata. 
What we see from all the reviewed proposals of 
extension, is that, from a formal point of view, all the 
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transition-functions of the automata can be represented 
as 

Boolean compound condition → ππππk / assignk / 
meaning that when the Boolean compound condition 
holds (testing of external input signals, events, state 
variables, values of data , clock values etc…), then the 
parallel assignment assignk of values to a set of variables 
will be performed. All the events, states, variables, 
actions, clocks will be represented as valued variables. 
a. the states will be considered themselves also as 
conditions and will be represented as general variables,  
b. the actions will be considered as assignment of  
values to variables (data or clock values (for instance 
clock-reset), set of calls of actions (functions), output of 
signals or events, change in state variables, etc…) 
An example of an abstract parallel automaton description 
of an application can be :  
/event1=1/ /event2=0/ /state1=2/ /clock1>100/ 
  →     /action3:=1/ /output3:=3/ /state2:=5/ /clock1:=0/ 
meaning: 
 when event1 arrived and not event2 while 
state1=2 at time clock1>100 
 then  do action3, send output3 with value 3, set 
state2 to 5, and reset timer clock1 
remarks : 
1) In the above example the left hand side of the rules 
should be understood as a conjunction. 
2) In order to control the timing of execution, the 
'Parallel Automaton' has to be executed in a synchronous 
way, in the sense that it is activated at intervals of time 
∆t, at each time ∆t, all the events (variable conditions, 
clocks, in their respective states) are taken into account, 
the automata-table is scanned, all the corresponding 
actions are performed simultaneously and must finish 
before the next ∆t. This means that there is one internal 
timer dealing with the scanning of the automaton, and 
external clocks used to measure the progression of the 
application. 
3) A subset of the Parallel Automaton is the Mealy 
machine in which there is only one state register, this 
means that the machine is running only one thread of 
execution, and that it has one (global) state. A typical 
rule of a Mealy automaton would be written in the form: 
/?event_received="event1"/ / current_state="state2"/    

→    /!action10:=1/ /current_state:= "state12"/ 
 
2.7 Implementable parallel automata derived from 
abstract parallel automata 
There can be various implementations, for instance:  
� ‘Global Parallel Automaton with private states’ : 
an application can be represented globally as a unique 
parallel automaton which describes the whole 
parallel/distributed application corresponding to its 
requirements, and takes into account all the parallel 
events and actions each one in their own private states to 
differentiate various branches or events or actions, or 
processors. These events/actions private states enable to 
avoid the explosion of the number of states, since it 

allows to deal separately with the 3 above points: events 
synchronization (each one in its private state), 
event/action differentiation (each state would then be just 
the occurrence number of the event/action in its branch), 
variable/clock values (each variable/clock would change 
its state only when they are required in a new case by the 
application).  
� ‘Parallel Hierarchical Automata with local 
states’: an application can be represented as a hierarchy 
of several parallel automata: each one having a local 
automata state, and representing a different parallel 
branch (or component) and a main automata 
synchronizing them. Each parallel automata can handle 
parallel events or actions using the automata local state. 
So, here also, there is no explosion of the number of 
states, since each hierarchical automata has his own local 
states and synchronizations. 
Remarks: It could be seen as a paradox, that a good way 
to describe a parallel/distributed application is to use a 
single (centralized) description, not several descriptions 
corresponding to the various parallel/distributed parts. 
But this way has advantages because it gives an overview 
of the global situation.  
a) Regrouping the requirements allows to 
enumerate, reduce and solve, in an easier way, the 
interaction problems between the various branches 
(common events),  
b) There is no need to deal with the problems of 
differentiating the handling of the same events/actions 
that can occur in various (synchronized) branches, during 
the progress of the application. 
c) Finally, it can also reduce the necessary number 
of variables and clocks. 
 
2.7.1 Description of a ‘Global Parallel Automaton 
with private states’  
In the global parallel automata, each parallel action/event 
is coupled with a “private state” representing the 
action/event occurrence number in the application. The 
number of  states is finite. There is no explosion of the 
number of states since the states are limited to each pair 
action/event. 
Synchronizations can be described by a product of pairs 
/evti,privateSi/ without changing the states to record the 
arrival of the events. There is no need at all for a global 
state in the automaton, i.e. for the whole application, 
only private states for each couple event/action or for 
each branch in the whole application . 
Each transition of the 'Global Parallel Automaton'-table 
is written in a product form: 

ππππi /condi, PrivateStatei/ → ππππk /actionk,newPrivateStatek/  
which means that for each transition a set of parallel 
conditions condi (each one in its own Private State) can 
provoke the execution of a set of parallel actions actionk 
with new Private States.  
 
 
Definitions : 
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 condi are boolean relations, it can be an event, an input 
signal or an input flag (true or false) noted for instance 
 " ?evt1 ",  it can be a variable condition e.g. "v >= 10", 
or it can be a clock condition e.g. 
"100<=clock(x)<=200". 
actionk are execution of actions,  it can be an output flag 
e.g. " !out3 ", it can be the execution of a function , for 
instance send Event " ! go " or " changeState(g)", it can 
be the setting of a value to a variable e.g. "setvar( v, 18 
)", or it can be the setting of a value to a clock e.g  
"setclock( b , 100 )" or . "resetclock(b)". 
Translation to the abstract general form 
For instance a transition such as : 
 / evt1 , 0 / /var1>3, 2/   →  / send evt3 , 4/ /do act0, 5/ 
will be translated in an abstract form of :  
 / ?evt1=1/ /s1=0/ /var1>3/ /s2=2/   

→  /evt3:=1/ /s3:=4/ /act0:=1/ /s1:=5/ 
 
2.7.2 Description of a set of ‘Parallel Hierarchical 
Automata with local states’ 
if an application can be represented as a hierarchy of 
several parallel automata made of a main automata 
synchronizing sub-Automata. Each parallel automata has 
its own local state to manages its events/actions, and can 
activate sub-automata. So, here also, the number of  
states of each automata is finite. There is no explosion of 
the number of states, since each hierarchical automata 
has his own local states and synchronizations. 
Here also, the local state of each automata will change, 
only in two cases :  
• Each time when the same pair act1 → /evt1,S1/ 
occurs in different situations in the local automata, 
• When the same variable or when the same clock is 
reset and used in different situations, in the local 
automata . 
Each transition of a local ‘Hierarchical Automaton’-table 
is written in a product form:  

ππππi /condi/ , LocalState  

 →  ππππk /actionk,ππππn /subAutomn(subStatem)/, newLocalState  
 
which means that, for a local automata state, a set of 
parallel conditions condi can provoke the execution of a 
set of parallel actions actionk with a new Local automata 
State, and activate a set of sub-automata each one 
starting in its own local state m.  
The same definitions apply : 
 condi are boolean relations, it can be an event, a signal 
or an input flag (true or false) , a variable condition or a 
clock condition . 
actionk are execution of actions,  it can be an output flag 
or the execution of a function , or the setting of a value to 
a variable, or the setting of a value to a clock . 
 
2.8 Examples of implemented parallel automata 

Let's take the classical train/gate crossing 
control example: A railway is crossing a road, a gate 
lowers down when a train is passing to avoid accidents 
with cars on the road, and raises up, when the train has 

exited the crossing.  The system was represented by 
Allur and Dill [8] as composed of three components  
(3 communicating independent timed-automata) working 
in parallel : the train, the gate and the controller.  

To make the example more implentable and to 
separate clearly the events from the actions, we have 
added physical switches which send events to the 
automata (Switch_TrainArrives, Switch_trainLeaves, 
Switch_gatedown, Switch_gateup ), orders which perform 
actions (for the train let_in , don’t_let_in , for the gate lower, 
raise ), and flags to synchronize the various automata (for 
the train Approach, isout, exited, for the gate isdown, isup).  
 
2.8.1  A solution using a set of  "Synchronous Parallel 
hierarchical Automata with local states" representing 
the 3 automata corresponding to the components  
CONTROLLER,  TRAIN, GATE, using three clocks x, 
y, z (one per component) : 
ππππi /condi/ , State LSi 

  →  ππππk/actionk/,ππππn/subAutomn(subStatem)/ 
    , newState LSj 

MAIN  AUTOMATON :  
1 /?Init/, LS 0 

→/Train autom(LS 0)//Controller autom(LS0)/ 
   /Gate autom(LS 0)/,LS 0 

TRAIN AUTOMATON  
2 /?Init/, LS 0  

→  /! don’t_let_in /, LS 0 
3 /? Switch_TrainArrives/, LS 0  

→ /! Approach/ /resetclock(x)/,LS 1 
4 /?isdown/ /3<= clock(x)<=5/,LS 1  

→ /! let_in/,LS 2 
5 /? Switch_train leaves/ /clock(x)>=5/,  LS 2 

→ /! isout/,LS 3 
6 /?isout/ / clock(x)>=5/,LS 3  

→ /! exited/ /! don’t_let_in /,LS 0 
CONTROLLER  AUTOMATON :  
7 /?Approach/,LS 0  

→ /resetclock(z)/,LS 1 
8 /clock(z)=1/,LS 1  

→ /! Lower/,LS 2 
9 /?exited/,LS 2  

→ /resetclock(z)/,LS 3 
10 /clock(z)=1/,LS 3  

→ /! raise/,LS 0 
GATE AUTOMATON :  
11 /?Lower/,LS 0  

→ /resetclock(y)/,LS 1 
12 /?Switch_gatedown/ /clock(y)=1/, LS 1  

→ /! isdown/,LS 2 
13 /?raise/,LS 2  

→ /resetclock(y)/,LS 3 
14 /?Switch_gateup/ /1<= clock(y)<=2/,  LS 3 

→ /! isup/,LS 0 
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Explanation: 
line 1: The MAIN AUTOMATON starts the 3 

component-automata in their initial local states LS 
0. 

line 2: The TRAIN AUTOMATON starts by sending a 
don’t_let_in event to the rail (meaning lighting a 
red semaphore, so that the trains cannot enter the 
crossing). 

line 3: When a train arrives it activates on the rail the 
Switch_TrainArrives, this sends the Approach 
event to the CONTROLLER AUTOMATON and 
starts the clock x. 

line 7: When the CONTROLLER AUTOMATON 
receives the Approach event , it starts its own 
clock z to wait for 1 minute, and then it sends the 
event Lower to the GATE AUTOMATON. 

line 11: When the GATE AUTOMATON receives the 
Lower event, it starts its clock y to wait for 1 min 
and for the Switch_gatedown (meaning that the 
gate is already down). When these two conditions 
occur, it sends the event isdown to the TRAIN 
AUTOMATON. 

line 4: When the TRAIN AUTOMATON detects the 
isdown event in a time between 3 min<= 
clock(x)<=5 min, it can send the event let_in to 
the rail (meaning lighting a green semaphore, so 
that the trains can now enter the crossing). 

etc... 
 
2.8.2 A solution using a "global parallel automaton 
with private states" representing the synchronizations 
of all the 3 components in one automata, using 2 clocks 
(x for the  train and y for the  gate ): 

ππππi /condi, PrivateState PSi/    → 

ππππk /actionk, newPrivateState PSk/ 
1 /? Switch_TrainArrives, PS 0/    

→/newState(Switch_TrainArrives), PS 1/  
/! don’t_let_in, PS0/ /resetclock(x), PS0/ /resetclock(y), 

PS0/ 
2 /clock(y)=1, PS 0/ 
 → / ! lower , PS 0/ /resetclock(y), PS 1/  
3 /?Switch_gatedown, PS 0/ /clock(y)=1, PS 1/  
   /3<= clock(x)<=5, PS 0/  →   / ! let_in , PS 0/  
4 /? Switch_train leaves, PS 0/ /clock(x)>=5, PS 0/  

→ /! isout, PS 0/ 
5 /? isout, PS 0/ /clock(x)>=5, PS 0/  
 → /! exit, PS 0/ /! don’t_let_in , PS 0/ 
6 /? exit, PS 0/       

→ /resetclock(x)), PS 1/  
7 /clock(x)=1, PS 1/     

→ / ! raise , PS 0/ /resetclock(y), PS 2/ 
8 /?Switch_gateup, PS0/ /1<= clock(y)<=2, PS2/ 
 →/newState(Switch_TrainArrives),PS 0/ 
Explanation: 
In this type of notation, we don't need inter-automata 
synchronization events, such as Approach, isdown, isup, 
since the synchronizations are made by the global 
automaton itself. 

Line1: When a train arrives (signal 
Switch_TrainArrives), 
 the system blocks the Switch_TrainArrives of 
another train by changing the private reception state 
to 1 , furthermore it prepares two clocks for 
measuring the timings of the train and of the gate , 
and it sends a don’t_let_in event to the rail 
(meaning lighting a red semaphore, so that the 
trains cannot enter the crossing). 

Line 2: the system waits for 1 min to send the event lower 
to the gate, the clock y is reset to prepare new gate 
timing (in its new private state 1). The gate lowers. 

Line 3: after 1min more and when the gate sent 
Switch_gatedown., the system verifies if the train 
clock x is between 3min<= clock(x)<=5min, if yes, 
it sends the event let_in to the rail (meaning lighting 
a green semaphore, so that the trains can now enter 
the crossing). 

etc... 
 
3. Conflicts in Parallel automata 
A major problem in the verification phase, is to detect 
and analyze conflicts caused by the parallelism. Parallel 
Automata are executed in a synchronous mode : So that 
at each cycle of the synchronous clock, all the lines of 
the parallel automata are scanned and eventually 
executed during this clock cycle, depending of the 
arrived events which occurred in the precedent cycle, or 
depending on the conditions (of variables or of time) 
which are true at this cycle.  So, conflicts can appear 
during a given same cycle of time: 
• when several contradictory events or conditions 

 occur,  
• when contradictory actions are performed or different 
values are assigned to the same variables. 
In fact, in each case the conflict is detected at execution 
time when reading flags (events flags or condition flags), 
or when writing value to flags (actions or timers), or 
writing values in variables. So, we can analyse these 
conflicts as read/write (RW) and write/write (WW) 
conflicts. In the general case, it is doubtful if algorithms 
can be designed for detecting conflicts in parallel 
systems, but in the case of finite state parallel automata, 
we can give algorithms which can be used as a basis for 
developing verification and testing tools. 
The main conflicts are: 
1) RW conflict. 
2) WW conflicts are of two kinds. 
(i) A strong conflict occurs when two or more 
assignments of different values are made (pseudo) 
simultaneously to the same location. 
(ii) A weak conflict occurs when two or more 
assignments of the same value are made (pseudo) 
simultaneously to the same location We now consider 
three kinds conflict free parallel automata: 
1) Very strict conflict free parallel automata, do not have 
any RW and WW conflicts and do not need any external 
synchronization mechanism to ensure freedom from 
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these conflicts. We will not discuss this notion further 
here. 
2) Strict conflict free parallel automata do not have any 
(strong or weak) WW conflicts, and it is assumed that a 
RW conflict never occurs because of the external 
synchronization used, e.g. read and write cycles never 
overlap. 
3) Lenient conflict free parallel automata, are like the 
strict ones, but may have weak conflicts. Weak conflicts 
should be reported as a warning, as it is up to the 
programmer or designer to decide whether or not it is 
possible for the application and hardware to run correctly 
with weak conflicts. 
 
4.  An example of an automaton with 
conflicts 
Let us define a coffee, milk automatic vending machine 
in which : 

� -there is a place to insert coins , the machine can 
recognize the coins to sum them up, each time a 
coin is inserted it produces the event coin(A) 
with the value A; 

� -there are two buttons that give the events coffee 
or milk to choose the desired beverage, and a 
button that gives the event cancel to return the 
sum inserted; 

� -there are two functions pourCoffee and 
pourMilk to give the desired beverage, and a 
function returnMoney to return the (remaining) 
inserted sum 

Here are the rules of a parallel automaton without 
conflict error for it: 
1 /? coin(A), PS 0/  

→  /sum:=sum + A, 0/ 
2 /? coffee, PS 0/ /sum>=coffeeprice, PS 0/ 

→ / pourCoffee, PS0/ /putSugar, PS0/ 
     /returnMoney(sum - coffeeprice), PS 0/  
    /sum:=0, PS 0/ 

3 /? milk, PS 0/ /sum>= milkprice, PS 0/  
→ / pourmilk, PS 0/  /putSugar, PS 0/ 

          /returnMoney(sum - milkprice), PS 0/  
   /sum:=0, PS 0/ 

4 /? cancel , PS 0/ 
→ / returnMoney(sum), PS 0/ 

the first line can be activated several times, each time a 
coin is inserted, 
the 2nd or 3rd line can be activated when there is enough 
money, 
the 4th line can be activated at any time, but will give 
back money or not according to the value of sum. 
 
Let us modify the machine and add a button capuccino to 
obtain a coffee-milk beverage. 
As a first idea, let us add a single supplementary line in 
the automaton specification, in order to activate in 
parallel the lines 2 and 3 : 
5 /? capuccino , PS 0/  

→  / ! coffee , PS 0/  / ! milk , PS 0/ 

This shows how lack of attention to detail can introduce 
weak and strong conflicts in the execution of lines 2 and 
3, which will run in parallel.  Strong conflicts : wrong 
conditions will be tested on the prices, and wrong sums 
will be returned, weak conflict : putSugar will be 
activated simultaneously twice (depending on the 
hardware, it will actually put one or two sugar(s). 
A better idea is to modify the initial automaton to avoid 
all the conflicts, by adding 3 lines: 
5 /? capuccino , PS 0/ /sum>=capucprice, PS 0/ 

→   / ! coffee , PS 1/ / ! milk , PS 1/  
      / returnMoney(sum - capucprice), PS 0/ 

6 /? coffee, PS 1/            
→   / pourCoffee, PS 0/  /putSugar, PS 0 / 

7 /? milk, PS 1/                   
→   / pourmilk, PS 0/  /sum:=0, PS 0/ 

by changing the private states of the coffee and milk 
events we can activate the 6th and the 7th lines in parallel 
instead of the lines 2 and 3 which will remain only 
sequential . So, changing (in line 5) the price condition to 
test and returning money only once. Then putting sugar 
and resetting the sum variable are made afterwards in 
line 6 and 7. 
 
5.    An execution platform for parallel 
automata for handling conflicts at run-time  
    Another way for conflict handling is building a 
parallel automata based executor, which prevents/alerts 
at the running stage, the execution of conflicts. 
Definition: 
Synchronized Parallel Hierarchic Automata executor 
(SPHAX)[18] is a robust execution platform for parallel-
automata running.  The automata and their 
interconnection are defined by a set of functions, and 
saved in a system table. The system executor scans 
the system table one time in a cycle, and reacts according 
to the rules of transitions defined.  The reactions are 
executed sequentially, but the automata run in parallel, 
since all their transitions are executed during the same 
cycle. 
The system structure is hierarchic.  This means that an 
automaton may contain sub-automata in a state.  The 
lifetime of the sub-automata is equal to the time delayed 
in the super-automata container state. 
Implementation: 
For an implementation, a Virtual Machine is designed as 
a platform to run the 'Parallel Automaton'.  
The following components are defined for the SPHAX 
implementation: 
• An Automata-Table, where all transitions of all 
automata are defined.  The transitions are grouped by 
their trigger (a combination of events and conditions) at 
different states.  Each group is called Entry and each 
Entry becomes a line in the Automata-Table.  
• A set of System-Clocks, that they automatically 
increments between the cycles.  The user can only read 
or reset these clocks.  
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• An Interrupt-Handler that can receive either external 
events or data.  The External events/data causes to 
emission of internal events or putting data to internal 
pipes.  Internal events are saved in the Global-Event-
Flag-Array.  
• An Automata-Processor, which is activated at the 
beginning of each cycle.  .  The Automata-Processor 
scans the Automata-Table for each automaton Ai , and 
records for each Entry of the current state Sb , the 
incoming relevant events into the entry’s Local-event-
Flag-Array (efi).  When all expected events arrived (not 
necessary in the same cycle) the Condition (Cj ^ vk  see 
following definitions) is checked and if is it true the 
reaction of the Entry is activated.  The Condition may be 
combined by: a condition based on clocks (Cj) and a 
condition based on variables (vk) .   The entry’s Local-
event-Flag-Array is reset even if the Condition was not 
true. 
•  When the Entry is activated, the reaction (function 
rn) ) is executed.  The Entry reaction is followed by the 
output of events (eq) , and by the automaton current state 
update to Sd.  If the new or old state holds sub-automata, 
sub-automata will be activated (+Az) or deactivated (-Ay) 
respectively. 
Each transition of the 'Parallel Automaton'-table is 
written in a product form:  
/event-flags, conditions/ /state/   

�   /reaction,output/ /new subAutom/ /new state/   
/π (efi) ^ Cj ^ Vk  /   / Sb / 

 �  / rn ^ π(eq)/  / -Ay+Az /  / Sd /      
And it is read as following: 
When all the expected events π(fi) arrived and the 
conditions cj ^ vk  is true, then the automaton reacts 
according to its current state Sb by executing a reaction 
function rn, emitting output-events π(eq), updating its 
state Sd and activating and deactivating automata -Ay+Az  
. 
Robustness : 
    In order to ensure correct execution, the system makes 
efforts to stabilize the environment during the cycle, and 
making all changes between the cycles. 
During the cycle all incoming events are delayed to the 
next cycle.  The clock values are in cycle units, and they 
maintain their values during the cycle.  The automata 
activation or deactivation is delayed to the end of the 
cycle.  
The value of the variables may be changed during the 
cycle by the actions.  Actions may be called in the same 
cycle many times.  The automata state may change 
during the cycle.   
The incoming relevant events are saved in flags by each 
automata entry, in order to avoid flag erasing by another 
automata. All variables are initiated to “no value”.  
Reading a variable that contains “no value”, turns the 
System Status Variable to “instable”.  
According to these definitions, the reaction time of an 
event is no more than 2 cycles, and the completion of all 

reaction must be before the next cycle starts.  If the 
execution of the reactions overflows the cycle, the 
System Status Variable turns to “instable”. 
Conflicts management: 
     Related to conflicts, the system avoids simultaneous 
access to variables by the serialization of actions.  
Moreover, the system detects also possible conflicts, by 
checking for double assignment of variables in a cycle.  
The same procedure is made for double calling of actions 
in a cycle.  In case of a detection of possible conflict in a 
variable or in an action, the System Status Variable is 
turned to “possible conflict”.  A stricter way for handling 
variable conflict is to assign a “no value” to the 
conflicted variable.  In order to avoid transition conflict, 
the transitions are saved in the system table in an 
ascending priority order.  This method provides chance 
for execution of high priority transitions first, since the 
executor scanning is made in a pre-defined order. 
 
6.  A-priori detection of actual conflicts 

In a companion paper [17], we have shown that a-
priori detection of actual conflicts for parallel automata 
is P-space hard. We therefore develop an approach 
based on potential conflicts. 

 
6.1 Potential conflict 

If the conjunction of the conditions of two rules is 
satisfiable and their right hand sides may cause a 
write/write conflict we say that the two rules are 
involved in a potential conflict. Note that the run time 
behavior is not considered at all, and that there may be 
no actual conflict even though there are potential 
conflicts. It is clear however, that if there are no 
potential conflicts, there are no actual conflicts. 

 
6.2 Detecting potential conflicts is possible in 
polynomial time when all conditions are 
conjunctions 
Detecting potential conflicts appears to be 
straightforward as can be seen from the following 
algorithm, which is equally applicable to untimed and 
timed automata. 

potential_conflict:=false;
for every pair of rules
loop
if there exist values for

making the left hand sides
of the pair of rules true
and the same variable is
assigned (different values)
on the right hand sides of
the pair of rules

then potential_conflict:=true;
exit for loop;
end if;
end for;

Even though checking for potential conflict appears to be 
straightforward, let us now investigate its complexity. 
Checking pairs of conditions contributes a quadratic term 
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to the complexity, and then we need to determine 
whether the conjunction of a pair of conditions is 
satisfiable.  
As all the conditions are conjunctions of primitive 
conditions, then so too is the conjunction of pairs of such 
conditions. Fortunately, determining the satisfiability of a 
conjunction of primitive conditions is easily done in 
polynomial time as follows. 

for each variable in the
condition
loop Form the intersection of
the ranges of values this
variable takes.
end for;
if all these intersections of
are not empty
then the condition is
satisfiable
else the condition is
unsatisfiable
end if;

 
Remark 

In the companion paper dealing with theoretical 
properties of abstract parallel automata [17], we show 
that any abstract parallel automaton can be converted in 
polynomial time into a nearly equivalent automaton with 
no potential conflicts, with size proportional to the size 
of the original automaton. The new automaton does not 
execute any assignments involving conflicts. This means 
of course that if the original automaton is free of 
conflicts, the new automaton has no potential conflicts 
and is equivalent to the original automaton. 
 
7.  Conclusion   
1) A general form of extended finite-states-machine was 
proposed, and two implementations were presented. 
2) Several forms of conflicts were identified, and several 
ways of dealing with this problem were proposed. An a-
priori conflict prevention approach, based on potential 
conflicts, seems to be useful for dealing with these 
problems. It is of importance that conversion to a form 
with no potential conflicts is possible in polynomial time, 
and the new automaton is proportional in size to the 
original automata.  
3) An important advantage of working with conflict free 
automata is easier testing and debugging. When 
transition rules are active simultaneously, the end result 
does not depend on the order of activation. (In this way 
they bear similarities to deterministic sequential 
automata.) Thus all possible interleavings of concurrent 
activities need not be considered, one is enough. 
4) Parallel automata notation was easy to use for building 
an execution platform and presenting proofs. It was hard 
to use for programming purposes, since the default 
behaviour is infinite looping (all rules are always active). 
A better default behaviour is that a rule fires once only, 
and on the right hand side we should indicate which 
rule(s) if any should  
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